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AN ALGORITHM FOR SHAPE OPTIMIZATION IN ELLIPTIC SYSTEf%* 

I.N. EANDOBA 

The problem of determining the shape of the simply connected cross-section 
of an elastic homogeneous prismatic rod which has the maximum torsional 
rigidity is considered. The cross-section has to belong to a given set 
in two-dimensional Euclidean space and the usual isoperinmtric constraint 
is imposed on its area. A method of successive approximations is given 
for finding the shape. At each approximation the level line of the 
solution of a boundary value problem in a domain which is chosen in a 
special way from the previous approximation is taken. 

Suppose that, in Euclidean space R2, we are given the bounded closed set D. Let 0 be the 
set of all simply connected open domains G of R2 which belong to the set D. For each 
domain G of 0, bounded by the closed Jordan curve I', U(r;p) is the solution of the boundary 
value problem (A is the Laplace operator) 

-AU (r; p) = 1, p E G; U (r; p) = 0, p E I? (1) 

Suppose we are given the functional J(r) = JG U(r; p) dp and the quantity P: mes (D)> P> 

,p;s ;he;;a;es;;) 
is the Lebesgue measure of G. We wish to find the element Go of 0 (and 
such that 

J(Y) = sup {J(r) 1 GCZ 0, mes (G) = P} 

We know /l, 2/ that a necessary condition for optimality of the contour I?" is 

lvu(r7 p) I=hZ, pErO\ao 

w(rh) 1s*,~Er0nao 

(2) 

(3) 

Here, X is a constant. 
Note that this problem is only of interest when the set D and the quantity P are such 

that D does not include a domain of circular shape of measure P. Otherwise, the solution 
of problem (2) is obvious, see /3/. 

We introduce the notation 

5: = G U r, c(r) = max {U(r; p) 1 p E C} 

1 (r) = (0, c(r)), re = {p E G I u (r; p) = C) 

B (r) = {r, I c E I (r)} 

Theorem 1. Let G be a domain of 0. Then, given any closed Jordan contour r* c G 
and any CE I (I'), we have 

J 0-c) - 1 $ (P) dp 2 J (l‘*) - \ (F* (p) dp 
R, 11* (4) 

R, = (5,\G*; R*-=C*\G,; cp(p)=/GU(r;p)I, PEG 

Here, G, and G* are the domains bounded by rC and F* respectively. 
For the proof, we use the method given in /4/. Given any a < 8 (a, b E 1 (r)), we define 

the sets 

S,-a = &\G,, s;-, = G* n s,_, 
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we fix some cEZ(T). 
The proof is in two stages, 
lo. We first show that (4) holds under the auxiliary assumptions with respect to the 

contours r, and r*: b) G,cG*, b) r* is a continuously differentiable curve which has not 
more than a finite number of points of intersection with any contour ra, C( E I (r). 

Put R,* = G,* \G,, where a~1 (r) (Fig.1). 
We introduce the auxiliary function 

c* =inf(a.~Z(I')[G*cG~) 

Clearly, 

(I, (c*) = J (I,*) - ,5 cp2 (P) d& 0 Cc) = J (rc) 

It is therefore sufficient for the proof to show that o(c)> o(c*). 
We will show that the function w(a) is monotonically increasing in the interval (c*, c). 

For this, we show that, given any a E (c*, c) and any 6 E (0, c - a), we have 

0 (a + 6) - w (a) > 0 (6) (5) 

We consider the equation 

01 (a + 6) - o (a) = A - B - C 

A = $ (+W)&J, B = 1 V (r:+d; P)dP 
,F** * 

%+o 

c = s u (I?%*; p) dp, sa* = sa*\z-+o 
s** 

1’ (rZ+a; p) = IJ (r,*; P) - u (r:+b; P) 

Using Green's formula, we make the following transformations (the integration with 
respect to 1 is made over the set %.+a): 

B = - a\ 
$ 

T- (I1;+6: p) AU (I'=*; p) dp = 1 U (1‘,*; P) D,,t- (r;+o; P) dl- 

%+B 

s u pa*; p) D,,C (r%*; p) dl = 5 u (r,*; p) D, (U (r:; p) - G (rZib; P)) dl- 
s u (r=*; p) D,U (ray p) dl = 1 j SC7 (rEta; p) j u c1’,*; p) dl 

Here, D, is the directional derivative along the outward normal to the relevant contour. 
Since u(r; p) 2 0 in G /5/, it follows from the maximum principle for harmonic functions 
that, for any a E (c*, c), p E C,* C; y,, we have up,; P)> u(r,*; P). Here, obviously, 

u (r,; P) = u (r; P) - a (6) 

Hence, given any a E (c*, c) and p ~2 ym, we have 1 vu (r,; p) 1 > 1 VU (ra*; p) I. Hence 

o(a+6)-co(a)>A-D-E 

D= 1 U(r,;p)dp, E= 1 yXYr;p)~u(r~;P)dP 
h* Ya+6 

(7) 

By Green's formulaand (l), (21, (6), we have (Fig.2) 

D=A-E-F 

F = S u (r,; p) D,U (r; p) al, la, 6 = lcL\ia+d 
1%. a 

(8) 
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Substituting Eq.(8) into condition (7), we obtain 

o(a+6)-m(a)pF>- 6H, H = 1 lWJU’;p)Idl 
‘a, b 

since, by Eq.(6) and the definition of ra (a E 1 (J?)), we have on la,0 the inequality 

u (r,; P) < 6. 
o< 

Fig.1 

r(c) 

Fig.2 

We calculate 

Fig.3 

(len Z,,CI is the length of ta,a). By condition b), we finally obtain limh?n 4.6 = 0 as 
6+0. Hence inequality (5) holds, which it was required to prove. 

2O. Under the general assumptions made in the theorem, we can choose a sequence of 
domains PA*);=, such that, for any k, the contour r** which bounds the domain G,* of 

the sequence satisfies condition b), while limJ(I'k*) = J(J?') as k-t 00. We can thus exclude 
condition b) made at the first stage of the proof. On the other hand, we can show that, 
given any awl: a<c, we have 

J(U = J(K) + S V~(P)QJ 

Hence follows the theorem for the contour ra. 
By the c-neighbouzhood of the domain G of 0 we mean the domain 

G(a)= U B(p,e), B(p,~)=(q~R~IIp-ql<<e), s>o 
ES 

Throughout, r(e) denotes the boundary of domain G(E). Consider a domain G of 0. Let the 
contour I? have the bounded curvature O<x< 00, where x = x (l?) = max {X (r; p) jp E r); x (r; 
p) is the curvature of I' at the point p. Let E (r) = I/X 03. 
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In this case, we define for domain G in (0, E (I’)1 the function (Fig.3) : 

F cr; E) = & { s u= (e; P) dP - s u2 (E; 4) 47) 

he e 

U (E; p) I; U (I’(e); p); Rle = Gel:* R,’ = G\c” 

Ge~O:re~13(r(~)), mesG'=mesG 

Clearly, F (r; E) > 0, e E (0, E (r)i. 

Theorem 2. Let the domain G of 0 satisfy the following conditions: a) mes G = P, 
b) the contour rF Cl and has the bounded curvature x, c) F(r; e)> Ce, C>O, d) there 
exists 6 (F)E (0, e (I’)J such that, for any O< e & 6(r), the curve P is a simply con- 
nected contour. Then, there exists O<Q, < 6(r) such that, given any O<e< eo, we have 

J (re) > Z(r) 

Before turning to the proof, we will make some preliminary remarks: first, for any domain 
G of0 andmany Q<mesG, there exists c~Z(l?): mss(Gc)== Q /6/; and second, by the 
definition of e (r), G (e) E 0, VE E (0, 6 (I?)]. 

Consider any e E (0, 6 (IJJ. By the above, there exists C(E)E I (I? (E)) such thatmes GCce) = 
P, and by Theorem 1, we have 

J (re) - a+ 2 I - a2 

a,= 1 $(~;p)dP, a,= 1 $(e:p)dp 
e 

‘P bR ;J = I VU (8; P) I, Rb E G (e) 

We define the aUXi1iaY.y function @((r; E) = @I - @,. Note some of its properties: 1) 
Q, (r; 0) = 0 for any domain GE o,, 2) the function @ (r; E) is continuous with respect to 
6 in (0, 6 (r)) , see /7/. 

To prove the theorem, it suffices to show that, for sufficiently/small E, we have 

Q (I?; e) - D (r; 0) = @ (r; e)> 0 (9) 

Consider an arbitrary point p* of RIE. By the definition of e(r) and I' (E), for the 
point p* we can give on the contours r and r(~) the points p1 and ~1~ respectively 
such that p* lies ontbe-segment L (pl, pz) which joins p, and pa. Also, the segment 

L (PI, PA is perpendicular to the curves r and r (e) at their respective points. 
By the formula of finite increments, we have 

CT (E; p*) = (vu (E; P,), PI - I’z) 1 P* - Pz 1. PO E L (Pt. P2) 

Hence, since v (E: p) is continuous in G(P), we have 

1' (e: p*) = (cp (e; p*) -+ $ (e: p*)) I p* - /I2 I 

Here, the function g (E; p) iS continuous With respect to p in 111 (P), where M (E) = (G(e) \ 

G)U@; and 9 (ei; pi) --f 0 as i-tee for any sequences {F~}:~, {pj}zl, such that 1'; .E 
,4{ (Ej) and ei-+O as i+co. 

Further, by the definition of K,e, we have 

u" (P; p*) < E2 ((02 (E; /7*) + U (E; p*)) 

0 (c: p) 24’ (E; p)ll, (F; p) -t $? (Pi p) 

We can show in the same way that‘ C.'ie; y*)>~"(T'jf: q*)+o(P; (I*)), where y* is any point 
of R2. 

In all, we have 
E’F (r; F) < &*a (r; E) f E3K (r; E) kn r 

K (r: E) = mas (a (F; p) 1 p E JZ (E)) - min {u (e; y) 1 q E M(F)} 
Hence CD (r; F)> (C - K (r; E) len r) E. It is now obvious that K(r; e)-0 as F -+ 0, 

whence (9) follows. 
It may be observed that condition d) of the theorem holds at least for domains on whose 

boundary the modulus of the gradient of the solution of problem (1) is greater than zero. As 
regards condition c), this is the hypothesis thatthe conditionholds for domains which do not 
satisfy condition (3). 

On the basis of Theorems 1 and 2, we give a numerical ,algorithm for constructing maximiz- 

ing sequence of the domains {Gh-)& in problem (2). 
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1) The initial domain G, can be found from intuitive considerations. But it is best 
to take p(D; G,)>O. Here, p(D; G) = min (d(q, r) I qE OD}, where d(g,IJ== min {I q --p (I p E I’}. 

21 As the next term of the sequence we take the domain G, = G8k-1, where rk = ret-l E 

B vk-1 h-d. 

3) We check the condition for ending the calculations: 

mes(@,)< 6P or 

Gg:V%>O ‘%+I f-l (@\~)+=iZI 

where 6G, = (Gk \Gk-,) U (Gt-,\Gk); SP> 0 is a pre-assigned quantity. 
4) If COnditiOn (10) iS not Satisfied, We take 0 < Ek <6 (r,) Such that a) D trk; ek) > 

0; b) Gk+l c D and pass to step 2). 
We assume in the algorithm that al.1 the domains Gk satisfy the constraints of Theorem 

2. 
Note #at this algorithm is related to the numerical method used in /8/ for minimizing 

heat flow. 
Numerical simulation shows that, along our sequence of domains, an improvement in fact 

occurs for the performance functional J, We see a decrease of pflt; G,) to zero ma B fall 
in the error of the modulus of the gradient of the solution of problem (1) at the boundary 
of each successive domain, If the constraint GC D 
of the iequence {G,}&, 

is not essential, we see convergence 
to a circle. Our method can also be used for some related problems 

(optimization of a doubly-connected section /9/, or minimization of a heat flow /4, lo/). 
The main attention has been paid in the literature to optimization methods in problems 

without constraints of the inclusion type GcD on the shape of the rod cross-section. 
Some of these algorithms may be found in /l, 2, 91. 

It must be said that the methods in /l, 2, 9f make explicit use of the necessary oon- 
dition (3) for optimality; an improvement in the accuracy of approximation to the optimal 
contour involves either an increase in the dimansionality of the non-linear system of algebraic 
equations which is solved in /2, 9/, or the need in /l/ to consider more and more complicated 
boundary value problems; when there are constraints of the type GcD on the shape of the 
rod cross-section, it is doubtful whether these methods can be used. 

The author thanks Yu.S. Osipov for suggesting the problem and for his interest, and 
A.P. Suetov for useful discussions and remarks. 
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